什么是纤维增强金属基复合材料

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 16:48:50
什么是纤维增强金属基复合材料

什么是纤维增强金属基复合材料
什么是纤维增强金属基复合材料

什么是纤维增强金属基复合材料
金属基复合材料一般都在高温下成形,因此要求作为增强材料的耐热性要高.在纤维增强金属中不能选用耐热性低的玻璃纤维和有机纤维,而主要使用硼纤维、碳纤维、碳化硅纤维和氧化铝纤维.基体金属用得较多的是铝、镁、钛及某些合金.
碳纤维是金属基复合材料中应用最广泛的增强材料碳纤维增强铝具有耐高温、耐热疲劳、耐紫外线和耐潮湿等性能,适合于在航空、航天领域中做飞机的结构材料.硼纤维增强铝也用于空间技术和军事方面.
碳化硅纤维增强铝比铝轻10%,强度高10%,刚性高一倍,具有更好的化学稳定性、耐热性和高温抗氧化性.它们主要用于汽车工业和飞机制造业.用碳化硅纤维增强钛做成的板材和管材已用来制造飞机垂尾、导弹壳体和空间部件.

金属基复合材料
6.1金属基复合材料的种类和基本性能
6.1.1金属基复合材料的种类
1.按基本分类
(1)铝基复合材料:良好的塑性和韧性,易加工性、工程可靠性及价格低廉等
(2)镍基复合材料:高温性能优良,有望成为燃汽轮机的叶片
(3)钛基复合材料:高比强度,中温强度较铝基好,超音速战斗机中用钛合金做蒙皮,主要与硼纤维结合增强
(4)镁基复...

全部展开

金属基复合材料
6.1金属基复合材料的种类和基本性能
6.1.1金属基复合材料的种类
1.按基本分类
(1)铝基复合材料:良好的塑性和韧性,易加工性、工程可靠性及价格低廉等
(2)镍基复合材料:高温性能优良,有望成为燃汽轮机的叶片
(3)钛基复合材料:高比强度,中温强度较铝基好,超音速战斗机中用钛合金做蒙皮,主要与硼纤维结合增强
(4)镁基复合材料:比铝基更轻,集超轻,高比强度,高比刚度于一体,是航空航天材料的优选材料(dmg=1.74, dAl=2.7)
还有锌基、铜基、耐热金属基、金属间化合物基等复合材料
2.按增强材料分类
(1)颗粒增强复合材料:增强相超过20%的弥散强化类型,其强度取决于颗粒的直径、间距和体积比
(2)层状复合材料:与纤维增强相比,它在平面各个方面上是增强的(二维增强,而不是一维增强)
(3)纤维增强复合材料:有长纤,短纤和晶须三种纤维,长纤亦可以一维纤维,二维布和三维网的方式存在。长纤维在基本中必须定向规整地存在,而短纤和晶须则是随机任意不定向存在。
6.1.2金属基复合材料中增强体的性质
金属基复合材料的增强体主要是无机物和金属。无机纤维有C纤维、B纤维、SiC, Al2O3、Si3N4纤维等。金属纤维主要有铍、钢、不锈钢和钨纤维等。增强颗粒主要是无机非金属颗粒,包括石墨、SiC, Al2O3、Si3N4、TiC、B3C3等。主要讲述纤维增强体。
纤维增强体的基本要求:
A高强度,
B高模量,
C容易制造和价格低廉,
D化学稳定性好,
E纤维的尺寸和形状: 大直径圆纤维为好,
F性能的再现性与一致性,
G抗损伤或抗磨损性能
6.1.3金属基复合材料的强度
纤维增强金属基复合材料的纵向强度和横向强度是不同的。
1. 纵向强度(图6-1,P127)
临界纤维体积比VF*
当弱纤维断裂时,将引起三种重要的变化。1)由于破断纤维失去强度,而使该处截面上的强度降低。2)破断纤维裂纹周围的静应力集中会降低材料的有效强度。3)破断纤维失去载荷时产生的动应力波会使复合材料受到冲击,从而降低该处横断面上的瞬时承载能力。
2. 横向强度
复合材料的横向模量随着增强材料的含量增加是增加的,但强度的变化是复杂的。因为材料总是在局部断裂,这并不是平均强度可以衡量的,但总体上基本受纤维严重束缚,其断裂强度理应比纯基体材料大。
6.1.4复合材料组分的相容性
包括物理相容性和化学相容性,物理相容性和压力变化、热变化时材料的伸缩性能有关,相容性的要求是外部载荷能通过基本均匀传递到增强物上,基体上的应力不会增强体的局部过于集中化学相容性则与界面结合、界面化学反应及环境的化学反应有关。
6.2金属基复合材料的制造工艺
虽然该类复合材料的工艺很多,大致有:粉末冶金法、热压法、热等静压法、挤压铸造法、共喷沉积法、液态金属浸润法、液态金属搅拌法、反应自生法等等,这些方法大多也尚在不断发展之中,但其基本制造方法可归纳成几个大类:固态法、液态法和自生成法及其它制备方法。
6.2.1固态法
基体和增强物均为固态。粉末冶金法、热压法、热等静压法等包括在此类。
6.2.2液态金属法
基体处于液态时与增强物复合的方法
6.2.3自生成法和其它方法
在基体内部通过反应生成增强物质的方法
其它方法:如复合涂(镀)法,将增强物细粒悬浮于镀液中用电镀或化学镀形成复合层。
6.3铝基复合材料
6.3.1颗粒(晶须)增强铝基复合材料
增强材料晶须有:SiC,Al2O3,SiO2,BC4,TiC
性能:性能优异,增强颗粒价格低廉,应用前景广阔,如SiC增强者:有良好的力学性能和耐磨性,拉伸强度和弹性模量都比基体高,且颗粒粒径越小,颗粒含量越大,强度就越高。耐磨性亦然。
6.3.2纤维增强铝基复合材料
增强纤维主要有B,C,SiC,Al2O3
1)BF/Al:硼纤维增强材料是最早研究和应用的,其高温性能尤其突出,在500时的拉伸强度达到500MPa,这是铝合金材料不可想象的。硼纤维比重:2.5-2.65.硼在钨丝上化学气相沉积得到纤维,表面还要加陶瓷涂层增加其抗氧化性能。
制造过程:纤维排列、复合材料组装压合和零件层压。用易挥发的粘结剂将维粘一起并和铝箔上一起热压。
2)C/Al复合材料:碳纤维有优异的力学性能,而价格较低。碳纤维的表面处理很关键,
3)SiCF/Al复合材料:特别的高温抗氧化性能,能在较高温度下与铝复合。产品性能。有高的拉伸强度抗弯强度和优异的耐磨性能
4)短纤维增强铝基复合材料
特点:增强体来源广,价格低,成形性好,材料性能各向同性,可用传统工艺成型加工。用氧化铝和硅酸铝增强铝基合金其高温强度明显高于基体,弹性模量在室温和高温下都有较大的提高,热膨胀系数小,耐磨性改善。
6.3.3 铝基复合材料的应用
性能好,但价格昂贵,所以主要用作航天飞机、人造卫星,空间站等的结构材料,其次用作导弹构件,自行车架,高尔夫球杆等体育用品上。其民用前景随造价的降低会很广泛。
6.4镍基复合材料(TMCS)
其复合材料有望用于燃气涡轮发动机的叶片,承受高温和高负载。
以单晶氧化铝(蓝宝石)晶须和杆增强简单镍或镍铬合金是主要研究类型。
蓝宝石与镍在高温下会发生化学反应,所以要进行表面处理,通常是在表面涂钨。
制造方法主要是将纤维夹在金属板之间进行热压。如热压法成功地制造了Al2O3-NiCr复合材料。其工艺是先在杆上涂Y2O3,再涂一层钨,然后将杆夹在金属板之间真空于1200℃加压41.4MPa.
6.5钛基复合材料(TMCS)
1)金属钛耐高温、耐腐蚀,比重低(4.5g/cm3),是高性能结构材料的首选材料
主要有颗粒增强和连续纤维增强两大类.
如用碳化硅颗粒增强时,其硬度和刚度提高,常温强度比基体有时有所降低,但高温强度比基体好。
连续纤维复合钛合金的难度很大,只能用固相复合,因钛在高温时易于与纤维反应。硼钛复合材料是主要研究对象。为了解决钛在高温下与基体的反应性,也就是与纤维的相容性问题,提出如下方法:(1)最大限度减小反应的高速工艺;(2)最大限度减少反应的低温工艺;(3)研究低活性的基体;(4)研制最大限度减小反应的涂层;(5)选择具有较大反应容限的系列;(6)设计上尽量减小强度降低的影响。
2)应用:主要以用在航空航天用超高速发动机上为目的,但目前也有用在民用上,用作汽车材料和体育器材上。
6.6碳纤维增强金属基复合材料
1)碳纤维和许多金属缺乏相容性,目前相容性较好的有铝镁镍钴等,和钛等其它金属复合时会形成碳化物,故需进行表面处理。
2)碳纤维和某些材料复合会有特殊性质,如与铜,铝和铅等复合有高的强度,导电性,低摩擦性,低膨胀性(尺寸稳定性)等
3)与碳复合的金属除铝是主要的外,还有铜镁铅锌锡铍等。
4)Cf/Al:对纤维进行增强与铝的润湿性处理很关键。这样在热压时能很好结合。涂敷金属或非金属层是可期待的改性方式。
5)Cf/Ni:电沉积热压是主要方法。但低压时获得的强度更高,原因是高压损伤了纤维。

收起